

Oscar Robles-Garay

Director Ejecutivo LACNIC

Comité ANUIES-TIC, CEDIIES

www.lacnic.net

ADMINISTRACIÓN DE NÚMEROS DE INTERNET

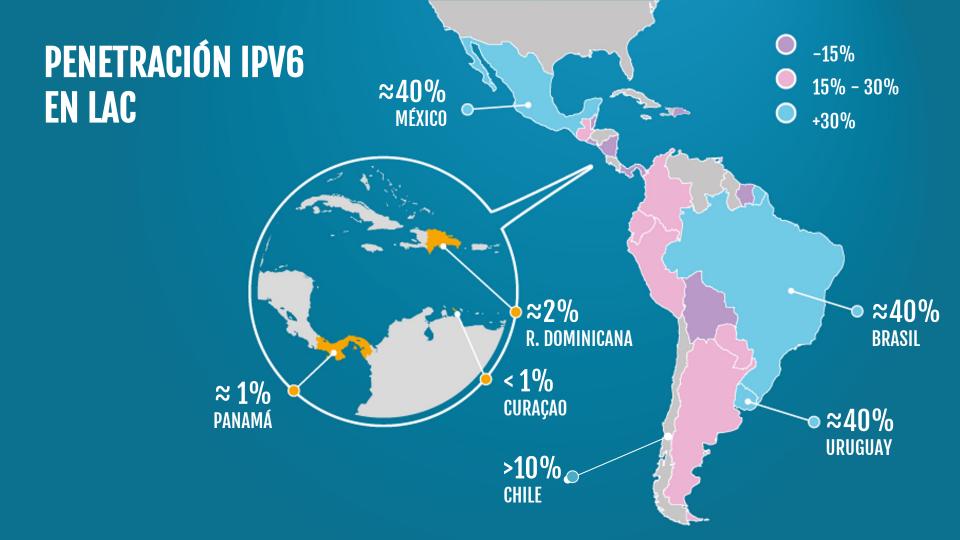
¿QUE ES IPv6?

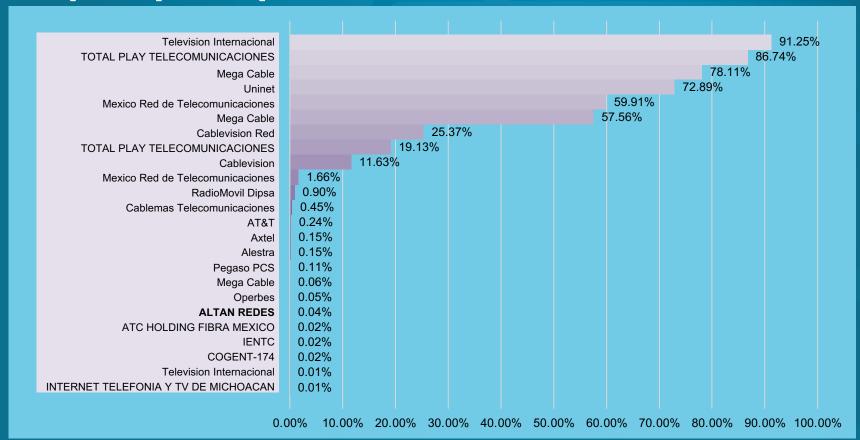
- Cada dispositivo necesita una dirección IP
- IPv4 fue el primer protocolo utilizado desde principios de los 80's-
- IPv6 es la evolución de IPv4
 - Escalable
 - Trazable
 - Eficiente

¿POR QUÉ ES ESTRATÉGICO EL DESPLIEGUE DE IPV6?

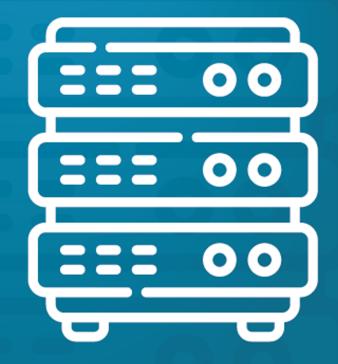
Direcciones IPv4 disponibles

POR QUÉ ES ESTRATÉGICO EL DESPLIEGUE DE IPv6


- IPv6 permite la trazabilidad de las transacciones.
- La trazabilidad de las transacciones, ante la comisión de un delito, es fundamental para la seguridad de Internet y para la confianza entre sus usuarios.


¿ESTÁ PREPARADA LA REGIÓN?

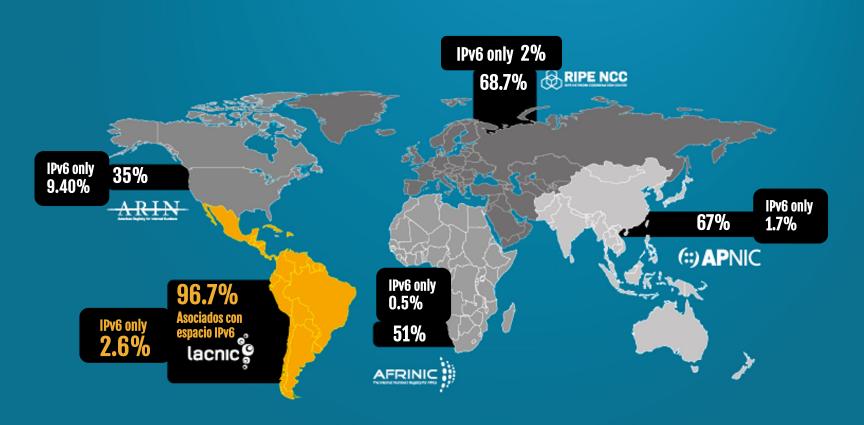
¿De quién es el problema? ¿La academia puede involucrarse? ¿Qué hay para la academia?



Los principales Operadores en México

Los que tienen mayor despliegue IPv6 en México

Organización	IPv6
AKAMAI-AS	99.29%
Televisión Internacional, S.A. de C.V.	91.25%
Centros Culturales de México, A.C. – UP	91.43%
TOTAL PLAY TELECOMUNICACIONES SA DE CV	86.74%
Maxihost LTDA	83.18%
Hughes de México, S.A. DE C.V.	80.04%
CLOUDFLARE NET	98.60%
Mega Cable, S.A. de C.V.	78.11%
Uninet S.A. de C.V.	72.89%
México Red de Telecomunicaciones, S. de R.L. de C.V.	59.91%
GDL ICANET, S.A. de C.V.	47.37%
NIDIX NETWORKS	35.88%
La Torre del Vigia A.R.	47.62%
Cablevision Red, S.A de C.V.	25.37%
TOTAL PLAY TELECOMUNICACIONES SA DE CV	19.13%
Instituto Federal Electoral	16.38%
Cablevision, S.A. de C.V.	11.63%



IPv6 en la academia de México

Institución	IPv6
Centros Culturales de Mexico, A.C UP	91.43%
Universidad de Guadalajara	8.63%
Universidad Nacional Autónoma de Mexico	2.22%
Universidad de Colima	1.35%
Instituto Politecnico Nacional	1.14%
Universidad Veracruzana	0.32%
Universidad Autonoma del Estado de Baja California	0.25%
Universidad Autonoma de Nuevo Leon	0.15%
Universidad de Guanajuato	0.14%
EL RESTO	0
*ALTAN REDES, S.A.P.I. de C. V.	0.04%

PORCENTAJE DE IPV6 EN CADA REGIÓN

MEJORES PRÁCTICAS PARA EL DESPLIEGUE DE IPV6

¿QUIÉNES DEBERÍAN INVOLUCRARSE?

GOBIERNOS

OPERADORES PROVEEDORES

ACADEMIA

USUARIOS DE INTERNET ¿QUÉ HAY PARA LA ACADEMIA?

PRINCIPALES APORTACIONES DE LA ACADEMIA

Innovación y Neutralidad.

- En la mayoría de nuestros países, la innovación es impulsada de manera importante por la academia.
- Al no ser un actor económico interesado en algún producto o servicio comercial, cumple un rol fundamental en el desarrollo de Internet al aportar puntos de vista neutrales e informados.

REGULACIÓN

Plazos obligatorios para el despliegue de IPv6 en concesionarios y permisionarios (operadores).

Fricción entre gobierno/regulador y operadores.

Operadores buscando excusas (inclusive amparos judiciales) para rechazar los plazos.

Imposibilidad de incluir entidades no reguladas.

COLABORACIÓN

Compromisos voluntarios para el despliegue de IPv6 por múltiples partes interesadas.

Sentido de colaboración entre los invitados a estos esfuerzos.

No hay excusas jurídicas.

Múltiples partes interesadas buscando soluciones (a veces aspiracionales, pero positivas) para contribuir en el despliegue.

¿QUÉ RECIBE LA ACADEMIA A CAMBIO?

Generación de Capacidades.

Con la propia operación de su propia red y servicios IPv6

Formar profesionales capacitados.

Con la producción de cursos de extensión a la industria local.

 Preparar la cantidad de profesionales que cada región va a necesitar.

¿QUÉ RECIBE LA ACADEMIA A CAMBIO?

Generación de Capacidades.

Con la incursión en proyectos innovadores IoT

 Participar de proyectos vinculados al desarrollo tecnológico de su comunidad: Smart Cities, Industria 4.0, etc.

Con su participación en el impulso a IPv6

 Consolidar su rol de actor estratégico en la coordinación y consolidación de organizaciones como IXPs y NOGs en la región.

¿QUÉ HAY PARA LOS GOBIERNOS?

REGULACIÓN

Plazos obligatorios para el despliegue de IPv6 en concesionarios y permisionarios (operadores).

Fricción entre gobierno/regulador y operadores.

Operadores buscando excusas (inclusive amparos judiciales) para rechazar los plazos.

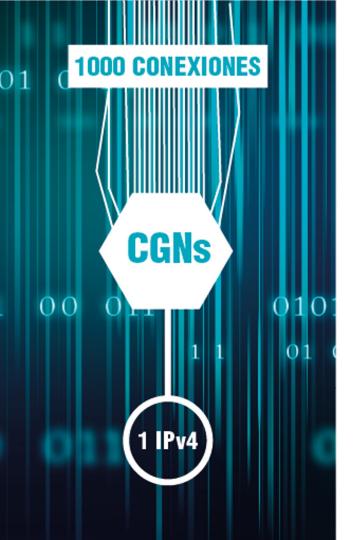
Imposibilidad de incluir entidades no reguladas.

COLABORACIÓN

Compromisos voluntarios para el despliegue de IPv6 por múltiples partes interesadas.

Sentido de colaboración entre los invitados a estos esfuerzos.

No hay excusas jurídicas.


Múltiples partes interesadas buscando soluciones (a veces aspiracionales, pero positivas) para contribuir en el despliegue.

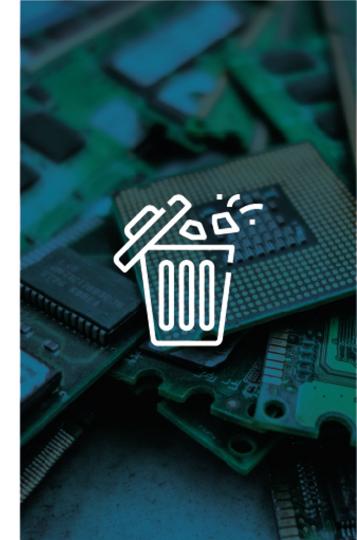
RESUMEN DE ACCIONES DEL ESTADO PARA UN DESPLIEGUE EFECTIVO DE IPV6

	ACCIÓN	Interno Gobiernos	Licenciatarios Operadores	Nacional Usuarios	¿Cuándo?
1A	Solicitar a Operadores obtener/mantener la capacidad de mapear cada IP a un suscriptor.	NA	>	NA	AHORA
1B	Limitar/Rechazar el uso de CGN mientras IPv6 no se haya desplegado.	NA	⊘	NA	Atender 2A/2B
2A	Establecer como requisito que las adquisiciones de equipo/servicios de TI sean compatibles con IPv6.	0	*	*	AHORA
2B	Limitar/Rechazar la importación de equipo que sea "sólo compatible con IPv4".	(0	O	Atender 2A
3A	Requerir que al menos uno de los servicios al público compatible con IPv6.	②	*	*	AHORA
3B	Requerir que la página principal de la oficina sea compatible con IPv6.	②	0	NA	AHORA

ACCIONES DEL ESTADO PARA UN DESPLIEGUE EFECTIVO DE IPV6 (1A Y 1B)

- Solicitar a Operadores obtener/mantener la capacidad de mapear cada IP a un (número reducido de) suscriptor(es)
- Limitar el uso de CGN mientras no se haya desplegado IPv6

ACCIONES DEL ESTADO PARA UN DESPLIEGUE EFECTIVO DE IPV6 (2A)


La demanda de servicios IPv6 es fundamental para impulsar su oferta.

 Establecer como requisito que las adquisiciones de equipo/servicios de TI sean compatibles con IPv6

ACCIONES DEL ESTADO PARA UN DESPLIEGUE EFECTIVO DE IPV6 (2B)

Evitar grandes inventarios de equipo obsoleto.

 Limitar/Rechazar la importación de equipo que sea "sólo compatible con IPv4"

ACCIONES DEL ESTADO PARA UN DESPLIEGUE EFECTIVO DE IPV6 (3A + 3B)

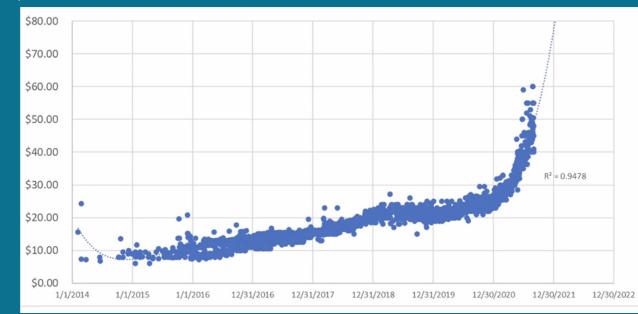
Habilitar los servicios de gobierno electrónico con IPv6.

- Requerir que los servicios al público sean compatibles con IPv6
- Requerir que la página principal de la oficina sea compatible con IPv6

Resumen de acciones del estado para un despliegue efectivo de IPv6

	ACCIÓN	Interno Goddernos	ILicenciatarios	Nacional Usuarios	¿Cuándo?
1A	Solicitar a Operadores obtener/mantener la capacidad de mapear cada IP a un suscriptor.	NA		NA	AHOR A
1B	Limitar/Rechazar el uso de CGN mientras IPv6 no se haya desplegado.criptor.	NA	②	NA	Atender 2A/2B
2A	Establecer como requisito que las adquisiciones de equipo/servicios de TI sean compatibles con IPv6.	O	*	*	AHOR A
2B	Limitar/Rechazar la importación de equipo que sea"sólo compatible con IPv4".	②	0	Ø	Atender 2A
3A	Requerir que al menos uno de los servicios al público compatible con IPv6.	O	*	*	AHOR A
3B	Requerir que la página principal de la oficina sea compatible con IPv6.		Ø	NA	AHOR A

Requiere de un análisis de impacto económico adicional.


- Regulador de Telecom
- Normas Oficiales Nacionales de Equipos (NOM, FCC, etc)
- Ministerio Economía/Comercio

- Estrategias de Seguridad Nacional/Policía/Jueces Civiles
- Agencia de Compras del Estado/Agencia de Innovación Gubernamental

¿QUÉ HAY PARA LOS OPERADORES + ISPS?

El costo incremental de IPv4 en el mercado secundario para mantener el crecimiento de usuarios. \$10 - \$50 USD

Fuentes:

- IPv4Auctions.com (Lee Howard)
- IPv4MarketGroup.com

COSTOS AL NO IMPLEMENTAR IPV6

Costo de adquisición de nuevos IPv4

Costo de mantenimiento de IPv4

Costo por riesgo de quedar aislado de Internet IPv6-only

Costo de oportunidad

- Renumeración
- M&A
- Transferencias intra LACNIC
- Mercado secundario
- Equipos NAT/CGN
- Bloqueos a otros servicios
- Latencia por NATs
 embebidos (experiencia
 usuarios/gamers)

 Inversión en infraestructura cada N años

Costo de IPv4 (costo competitivo).

- Las inversiones en TI no ocurren cada año en toda la infraestructura. En el mejor de los casos cada 3 a 5 años
- Las tendencias actuales indican que en 2023 la mayor parte de las redes serán IPv6
- Algunas inclusive se diferenciarán por el servicio sobre IPv6
- Un despliegue efectivo de IPv6 no se consigue en menos de 4 años
- Si no empezaron ya, estarán fuera de competencia en 4 años

Costo de IPv4 (costo de la transacción).

- Los servicios actuales con IPv4 requieren tiempo de procesamiento en cada dispositivo traductor de direcciones IP: DHCP servers, NATs, CGNs
- ¿Cuánto cuesta una "alta" latencia?

Además de los costos directos de cada equipo NAT, la integración tecnológica, su administración y configuración.

Latencia, "the unintended killing feature of IPv6"

- ¿Por qué los Operadores invierten tanto en acertar su contenido a los usuarios mediante CDNs y bajar la latencia de sus contenidos de 200ms a 20ms?
- ¿De qué sirve a una CDN colocar su contenido en una red que no tiene IPv6 si la latencia seguirá siendo alta?

Costo de IPv4 (Riesgo de perder de vista parte de Internet).

- El día de hoy, aún y cuando sólo ¼ redes transportan tráfico IPv6, algunas redes ya no les interesa IPv4, 700 redes (hace 18 meses había sólo 250), hoy no ven IPv4
- 5587 redes IPv6 Only

Costo de mantener IPv4 (Pérdida de ingresos por no participar en nichos más lucrativos).

- La comunidad de jugadores en línea necesita un internet sin latencia
- Low Latency Matters in Online Gaming
- Videovigilancia privada, para empresas y personas

 Atender solicitudes de información de la autoridad para la resolución de investigaciones

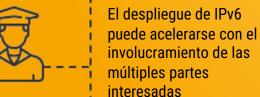
POSIBILIDAD DE NUEVOS SERVICIOS

¿QUÉ HAY PARA LOS USUARIOS?

RESUMEN DE BENEFICIOS PARA LAS DIFERENTES PARTES INTERESADAS CON EL DESPLIEGUE DE IPV6

BENEFICIO	ISP	ACADEMIA	USUARIOS	ESTADO
Discusiones enriquecidas en beneficio de su comunidad	Ø	Ø	Ø	Ø
Incremento de nuevos usuarios	Ø		⊘	⊘
Promesa Completa de Internet de las Cosas (IoT)	Ø	Ø	Ø	Ø
Promesa Completa de SmartCities	Ø		Ø	⊘
Posibilidad de Trazabilidad de las Transacciones ante hechos ilícitos	Ø		⊘	Ø
Reducción de costo para mantener crecimiento de usuarios(costo IPv4 2nd MKT + CGN)	•			
Reducción de Latencia por costo transaccional en IPv4	Ø		⊘	
Competitividad en servicios basados en IPv6	Ø		Ø	
Mantenerse "visible" para todo Internet	Ø		⊘	
Formación de Profesionales capacitados en IPv6	Ø	②	Ø	Ø
Soluciones de Monitoreo y vigilancia	Ø		⊘	

EN POCAS PALABRAS, CONCLUSIONES



EN RESUMEN

IPv6 dejó de ser una necesidad tecnológica y se ha convertido en un asunto estratégico para el desarrollo de iniciativas digitales nacionales

No todas las recomendaciones son aplicables en todos los países.

Contribuye con ese esfuerzo a diferentes niveles.

Campus

webinars

lacnic eventos

ALGUNAS REFERENCIAS

¿CONSULTAS?

Oscar Robles-Garay

Director Ejecutivo LACNIC

Comité ANUIES-TIC, CEDIIES

www.lacnic.net